(本小题满分12分)如图,四棱锥S—ABCD中,底面ABCD是菱形,其对角线的交点为O,且SA=SC,SA⊥BD(1)求证:SO⊥平面ABCD;(2)设∠BAD=60°,AB=SD=2,P是侧棱SD上的一点,且SB∥平面APC,求三棱锥A—PCD的体积.
在△ABC中,角A,B,C所对的边分别为a,b,c.已知,且满足. (1)求角A的大小; (2)若||+||=||,试判断△ABC的形状.
14分)已知椭圆中心在原点,焦点在x轴上,一个顶点为A(0,-1),且其右焦点到直线x-y+=0的距离为3.(I)求椭圆的方程; (II)是否存在斜率为k(k≠0)的直线l,使l与已知椭圆交于不同的两点M、N, 且|AN|=|AM|?若存在,求出k的取值范围;若不存在,请说明理由.
(I)求证数列; (II)求数列; (III)。
设函数为奇函数,其图象在x=1处的切线与直线垂直,导函数的最小值为. (I)求; (II)求函数的单调递增区间,并求函数在上的最大值和最小值.
如图,已知矩形ABCD中,AB=10,BC=6,将矩形沿对角线BD把△ABD折起,使A移到点,且在平面BCD上的射影O恰好在CD上. (1)、求证:; (2)、求证:平面平面; (3)、求三棱锥的体积.