已知正方体的棱长为,分别是棱的中点,(1)求正方体的内切球的半径与外接球的半径之比;(2)求四棱锥的体积。
(本小题满分12分)如图,过四棱柱形木块上底面内的一点和下底面的对角线将木块锯开,得到截面.(1)请在木块的上表面作出过的锯线,并说明理由;(2)若该四棱柱的底面为菱形,四边形时矩形,试证明:平面平面.
(本小题满分12分) 某市有三所高校,其学生会学习部有“干事”人数分别为,现采用分层抽样的方法从这些“干事”中抽取名进行“大学生学习部活动现状”调查.(1)求应从这三所高校中分别抽取的“干事”人数;(2)若从抽取的名干事中随机选两名干事,求选出的名干事来自同一所高校的概率.
(本小题满分12分)已知数列的前项和为,且,其中(1)求数列的通项公式;(2)若,数列的前项和为,求证:
(本小题满分12分)函数部分图象如图所示.(Ⅰ)求的最小正周期及解析式;(Ⅱ)设,求函数在区间上的最大值和最小值.
(本小题满分14分)已知函数.(1)当,时,求的单调区间;(2)设函数在点处的切线为,直线与轴相交于点.若点的纵坐标恒小于,求实数的取值范围.