(本小题满分12分)已知椭圆,其中为左、右焦点,且离心率,直线与椭圆交于两不同点.当直线过椭圆右焦点且倾斜角为时,原点到直线的距离为.(Ⅰ)求椭圆的方程;(Ⅱ)若,当面积为时,求的最大值.
已知 (1)求;(2)
已知数列的前项之和为,且. (1)求的通项公式; (2)数列满足,求数列的前项和; (3)若一切正整数恒成立,求实数的取值范围.
已知,(且). (1)过作曲线的切线,求切线方程; (2)设在定义域上为减函数,且其导函数存在零点,求实数的值.
椭圆的两焦点坐标分别为,且椭圆过点. (1)求椭圆方程; (2)过点作不与轴垂直的直线交该椭圆于两点,为椭圆的左顶点,试判断的大小是否为定值,并说明理由.
如图,在四棱锥中,平面平面,,是等边三角形,已知,. (1)求证:平面;(2)求三棱锥的体积.