(本大题满分10分)已知函数;(1)求的值;(2)若,求的最大值和最小值.
已知关于x的一元二次函数(1)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为和,求函数在区间[上是增函数的概率;(2)设点(,)是区域内的随机点,求函数上是增函数的概率.
在直三棱柱ABC-A1B1C1中,已知AB=5,AC=4,BC=3,AA1=4,点D在棱AB上.(1)求证:AC⊥B1C;(2)若D是AB中点,求证:AC1∥平面B1CD.
已知数列的前n项和为,(1)证明:数列是等差数列,并求;(2)设,求证:
已知函数.(1)求函数的最大值,并写出取最大值时的取值集合;(2)已知中,角的对边分别为若求实数的最小值.
A.(坐标系与参数方程)已知直线的参数方程为(为参数),圆的参数方程为(为参数),则圆心到直线的距离为_________.B.(几何证明选讲)如右图,直线与圆相切于点,割线经过圆心,弦⊥于点,,,则_________.C.(不等式选讲)若存在实数使成立,则实数的取值范围是_________.