如图,是椭圆的左右顶点,是椭圆上异于的任意一点,若椭圆的离心率为,且右准线的方程为(1)求椭圆的方程;(2)设直线交于点,以为直径的圆交直线于点,试证明:直线与轴的交点为定点,并求出点的坐标.
已知函数f(x)=ax2-(a+2)x+lnx.(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)当a>0时,若f(x)在区间[1,e]上的最小值为-2,求a的取值范围.
已知函数f(x)=(ax+1)ex.(1)求函数f(x)的单调区间;(2)当a>0时,求函数f(x)在区间[-2,0]上的最小值.
已知函数f(x)=x3+ax2+bx+a2(a,b∈R).(1)若函数f(x)在x=1处有极值10,求b的值;(2)若对于任意的a∈[-4,+∞),f(x)在x∈[0,2]上单调递增,求b的最小值.
已知函数f(x)=xlnx-x2.(1)当a=1时,函数y=f(x)有几个极值点?(2)是否存在实数a,使函数f(x)=xlnx-x2有两个极值?若存在,求实数a的取值范围;若不存在,请说明理由.
已知函数f(x)=(x2+ax-2a2+3a)ex(x∈R),其中a∈R.(1)当a=0时,求曲线y=f(x)在点(1,f(1))处的切线的斜率;(2)当a≠时,求函数y=f(x)的单调区间与极值.