如图,已知△ABC中,∠B="90" º,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒. (1)出发2秒后,求PQ的长; (2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形? (3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.
如图,▱ABCD中,点E、F分别在边AD、BC上,且AE=CF,连接BE、DF.求证:BE∥DF.
将正比例函数y=2x的图象沿y轴平移后,恰好经过点A(2,3),求平移后的函数解析式.
如图,直线y=﹣x+1交y轴于A点,交x轴于C点,以A,O,C为顶点作矩形AOCB,将矩形AOCB绕O点逆时针旋转90°,得到矩形DOFE,直线AC交直线DF于G点. (1)求直线DF的解析式; (2)求证:OG平分∠CGD; (3)在第一象限内,是否存在点H,使以G,O,H为顶点的三角形为等腰直角三角形?若存在请求出点H的坐标;若不存在,请什么理由.
如图1,四边形ABCD是正方形,点G是BC边上任意一点,DE⊥AG于点E,BF∥DE且交AG于点F. (1)求证:AE=BF; (2)如图2,连接DF、CE,探究线段DF与CE的关系并证明; (3)图1中,若AB=4,BG=3,求EF长.
将矩形ABCD折叠使A,C重合,折痕交BC于E,交AD于F, (1)求证:四边形AECF为菱形; (2)若AB=4,BC=8,求菱形的边长; (3)在(2)的条件下折痕EF的长.