解方程(每题4分,共8分)(1)8x3+125=0(2)64(x+1)2-25=0
如图,在△ABC中,∠C=60°,BC=4,AC=,点P在BC边上运动,PD∥AB,交AC于D. 设BP的长为x,△APD的面积为y .(1)求AD的长(用含x的代数式表示);(2)求y与x之间的函数关系式,并回答当x取何值时,y的值最大?最大值是多少?(3)点P是否存在这样的位置,使得△ADP的面积是△ABP面积的?若存在,请求出BP的长;若不存在,请说明理由.
如图,已知每个小方格都是边长为1的正方形,我们称每个小正方形的顶点为格点,以格点为顶点的图形称为格点图形. 图中的△ABC是一个格点三角形.(1)请你在第一象限内画出格点△AB1C1, 使得△AB1C1∽△ABC,且△AB1C1与△ABC的相似比为3:1;(2)写出B1、C1两点的坐标.
甲口袋中装有2个小球,它们分别标有数字1、2,乙口袋中装有3个小球,它们分别标有数字3、4、5.现分别从甲、乙两个口袋中随机地各取出1个小球,请你用列举法(画树状图或列表的方法)求取出的两个小球上的数字之和为5的概率.
如图,某同学在测量建筑物AB的高度时,在地面的C处测得点A的仰角为30°,向前走60米到达D处,在D处测得点A的仰角为45°,求建筑物AB的高度.
已知:如图,在△ABC中,∠A=30°, tanB=,AC=18,求BC、AB的长.