(年贵州省黔东南州)如图,已知二次函数的图象与x轴的一个交点为A(4,0),与y轴的交点为B,过A、B的直线为.(1)求二次函数的解析式及点B的坐标;(2)由图象写出满足的自变量x的取值范围;(3)在两坐标轴上是否存在点P,使得△ABP是以AB为底边的等腰三角形?若存在,求出P的坐标;若不存在,说明理由.
(1)化简:; (2)解不等式组:
用圆规、直尺作图,不写作法,但要保留作图痕迹. 已知:线段a、c,∠. 求作:△ABC,使BC=a,AB=c,∠ABC=∠. 结论:
已知抛物线经过A(2,0). 设顶点为点P,与x轴的另一交点为点B. (1)求b的值,求出点P、点B的坐标; (2)如图,在直线 上是否存在点D,使四边形OPBD为平行四边形?若存在,求出点D的坐 标;若不存在,请说明理由; (3)在x轴下方的抛物线上是否存在点M,使△AMP≌△AMB?如果存在,试举例验证你的猜想;如果不存在,试说明理由.
(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF; (2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD. (3)运用(1)(2)解答中所积累的经验和知识,完成下题: 如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE="10," 求直角梯形ABCD的面积.
如图某天上午9时,向阳号轮船位于A处,观测到某港口城市P位于轮船的北偏西67.5°,轮船以21海里/时的速度向正北方向行驶,下午2时该船到达B处,这时观测到城市P位于该船的南偏西36.9°方向,求此时轮船所处位置B与城市P的距离?(参考数据:sin36.9°≈,tan36.9°≈,sin67.5°≈,tan67.5°≈)