(本题满分12分)在平面直角坐标系中,抛物线交轴于两点,交轴于点,已知抛物线的对称轴为.
⑴求这个抛物线的解析式;⑵在抛物线的对称轴上是否存在一点,使点到A、C两点间的距离之和最大.若存在,求出点的坐标;若不存在,请说明理由.(3)如果在轴上方平行于轴的一条直线交抛物线于两点,以为直径作圆恰好与轴相切,求此圆的直径.
某商店决定购进A、B两种纪念品.若购进A种纪念品10件,B种纪念品5件,需要1000元;若购进A种纪念品5件,B种纪念品3件,需要550元. (1)求购进A、B两种纪念品每件各需多少元? (2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑到市场需求,要求购进A种纪念品的数量不少于B种纪念品数量的6倍,且不超过B种纪念品数量的8倍,那么该商店共有几种进货方案? (3)若销售每件A种纪念品可获利润20元,每件 B 种纪念品可获利润30元,在(2)的各种进货方案中,哪一种方案获利最大?最大利润是多少元?
如图① ,在△ABC中,AB=AC=4,∠BAC=90o,AD⊥BC,垂足为D. (1)S△ABD =.(直接写出结果) (2)如图②,将△ABD绕点D按顺时针方向旋转得到△A′B′D,设旋转角为(),在旋转过程中: 探究一:四边形APDQ的面积是否随旋转而变化?说明理由 探究二:当的度数为多少时,四边形APDQ是正方形?说明理由.
小明同学看到路边上有人设摊玩“有奖掷币”游戏,规则是:交2元钱可以玩一次掷硬币游戏,每次同时掷两枚硬币,如果出现两枚硬币正面朝上,奖金5元;如果是其它情况,则没有奖金(每枚硬币落地只有正面朝上和反面朝上两种情况).小明拿不定主意究竟是玩还是不玩,请同学们帮帮忙! (1)请用列表或画树形图的方法求出中奖的概率; (2) 如果有100人,每人玩一次这种游戏,大约有人中奖,奖金共约是元;设摊者约获利元; (3) 通过以上“有奖”游戏,你从中可得到什么启示?
如图,AD∥FE,点B、C在AD上,∠1=∠2,BF=BC. ⑴ 求证:四边形BCEF是菱形 ⑵ 若AB=BC=CD,求证:△ACF≌△BDE
如图,一艘舰艇在海面下500米A点处测得俯角为30°前下方的海底C处有黑匣子信号发出,继续在同一深度直线航行4000米后再次在B点处测得俯角为60°前下方的海底C处有黑匣子信号发出,求海底黑匣子C点距离海面的深度(结果保留根号).