(钦州)如图,在平面直角坐标系中,以点B(0,8)为端点的射线BG∥x轴,点A是射线BG上的一个动点(点A与点B不重合).在射线AG上取AD=OB,作线段AD的垂直平分线,垂足为E,且与x轴交于点F,过点A作AC⊥OA,交射线EF于点C.连接OC、CD,设点A的横坐标为t.(1)用含t的式子表示点E的坐标为_______;(2)当t为何值时,∠OCD=180°?(3)当点C与点F不重合时,设△OCF的面积为S,求S与t之间的函数解析式.
如图,正方形的边长为x,用代数式表示图中阴影部分的面积,并计算当时,阴影部分的面积.(取3.14)
已知函数图象如图所示,根据图象可得: (1)抛物线顶点坐标; (2)对称轴为; (3)当x=时,y有最大值是; (4)当时,y随着x得增大而增大。 (5)当时,y>0.
一个长方形的长减少10㎝,同时宽增加4㎝,就成为一个正方形,并且这两个图形的面积相等,求员长方形的长、宽各是多少。
若点A(,),B(,)在上述一次函数的图象上,且,试比较、的大小,并说明理由。
某电器经营业主计划购进一批型号相同的挂式空调和电风扇。若购进8台空调和20台电风扇,需要资金17400元;若购进10台空调和30台电风扇,需要资金22500元。 ①求挂式空调和电风扇每台的采购价是多少元? ②该经营业主计划购进这两种电器共70台,而用于购买这两种电器的资金不超过30000元。根据市场行情,销售一台这样的空调可获利200元,销售这样的一台电风扇可获利30元,该业主希望这两种电器销售完时,所获得利润不少于3500元。该业主有哪几种进货方案?哪种方案获利最大?最大利润是多少元?