(本题12分)如图,平面直角坐标系中,O为坐标原点,抛物线经过,两点,与y轴交于点D,与x轴交于另一点B.点E坐标为,点P是线段BO上的一个动点,从点B开始以1个单位每秒的速度沿BO向终点O运动;(1)求此抛物线的解析式;(2)设运动时间为t秒,直线PE扫过四边形ABCD的面积为S,当直线PE与线段BC有交点时,求S关于t的函数关系式;(3)能否将△OEB绕平面内某点旋转90°后使得△OEB的两个顶点落在抛物线上?若能,请直接写出旋转中心的坐标;若不能,请说明理由.
x2+10x+9=0
x2+1=2x
x2-4="0"
已知:如图,在平面直角坐标系中,O为坐标原点,△OAB的顶点A、B的坐标分别是A(0,5),B(3,1),过点B画BC⊥AB交直线y=﹣m(m>)于点C,连结AC,以点A为圆心,AC为半径画弧交x轴负半轴于点D,连结AD、CD. (1)求证:△ABC≌△AOD; (2)设△ACD的面积为S,求S关于m的函数关系式; (3)若四边形ABCD恰有一组对边平行,求m的值.
【提出问题】如图1,小东将一张AD为12,宽AB为4的长方形纸片按如下方式进行折叠:在纸片的一边BC上分别取点P、Q,使得BP=CQ,连结AP、DQ,将△ABP、△DCQ分别沿AP、DQ折叠得△APM,△DQN,连结MN.小东发现线段MN的位置和长度随着点P、Q的位置发生改变. 【规律探索】 (1)请在图1中过点M,N分别画ME⊥BC于点E,NF⊥BC于点F. 求证:①ME=NF;②MN∥BC. 【解决问题】 (2)如图1,若BP=3,求线段MN的长; (3)如图2,当点P与点Q重合时,求MN的长.