(南宁)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣1,1),B(﹣3,1),C(﹣1,4).(1)画出△ABC关于y轴对称的△A1B1C1;(2)将△ABC绕着点B顺时针旋转90°后得到△A2BC2,请在图中画出△A2BC2,并求出线段BC旋转过程中所扫过的面积(结果保留π).
如图,以 ΔABC 的 BC 边上一点 O 为圆心,经过 A , C 两点且与 BC 边交于点 E ,点 D 为 CE 的下半圆弧的中点,连接 AD 交线段 EO 于点 F ,若 AB = BF .
(1)求证: AB 是 ⊙ O 的切线;
(2)若 CF = 4 , DF = 10 ,求 ⊙ O 的半径 r 及 sin B .
在数学活动课上,老师要求学生在 5 × 5 的正方形 ABCD 网格中(小正方形的边长为 1 ) 画直角三角形,要求三个顶点都在格点上,而且三边与 AB 或 AD 都不平行.画四种图形,并直接写出其周长(所画图象相似的只算一种).
如图,某城市市民广场一入口处有五级高度相等的小台阶.已知台阶总高1.5米,为了安全,现要做一个不锈钢扶手 AB 及两根与 FG 垂直且长为1米的不锈钢架杆 AD 和 BC (杆子的底端分别为 D 、 C ) ,且 ∠ DAB = 66 . 5 ° .(参考数据: cos 66 . 5 ° ≈ 0 . 40 , sin 66 . 5 ° ≈ 0 . 92 )
(1)求点 D 与点 C 的高度差 DH ;
(2)求所有不锈钢材料的总长度(即 AD + AB + BC 的长,结果精确到0.1米)
某水果基地计划装运甲、乙、丙三种水果到外地销售(每辆汽车规定满载,并且只装一种水果).如表为装运甲、乙、丙三种水果的重量及利润.
甲
乙
丙
每辆汽车能装的数量(吨 )
4
2
3
每吨水果可获利润(千元)
5
7
(1)用8辆汽车装运乙、丙两种水果共22吨到 A 地销售,问装运乙、丙两种水果的汽车各多少辆?
(2)水果基地计划用20辆汽车装运甲、乙、丙三种水果共72吨到 B 地销售(每种水果不少于一车),假设装运甲水果的汽车为 m 辆,则装运乙、丙两种水果的汽车各多少辆?(结果用 m 表示)
(3)在(2)问的基础上,如何安排装运可使水果基地获得最大利润?最大利润是多少?
某校初三(1)班部分同学接受一次内容为“最适合自己的考前减压方式”的调查活动,收集整理数据后,老师将减压方式分为五类,并绘制了图1、图2两个不完整的统计图,请根据图中的信息解答下列问题.
(1)初三(1)班接受调查的同学共有多少名;
(2)补全条形统计图,并计算扇形统计图中的“体育活动 C ”所对应的圆心角度数;
(3)若喜欢“交流谈心”的5名同学中有三名男生和两名女生;老师想从5名同学中任选两名同学进行交流,直接写出选取的两名同学都是女生的概率.