(贺州)如图,已知抛物线与直线AB相交于A(﹣3,0),B(0,3)两点.(1)求这条抛物线的解析式;(2)设C是抛物线对称轴上的一动点,求使∠CBA=90°的点C的坐标;(3)探究在抛物线上是否存在点P,使得△APB的面积等于3?若存在,求出点P的坐标;若不存在,请说明理由.
如图,某巡逻艇计划以40海里 / 时的速度从 A 处向正东方向的 D 处航行,出发1.5小时到达 B 处时,突然接到 C 处的求救信号,于是巡逻艇立刻以60海里 / 时的速度向北偏东 30 ° 方向的 C 处航行,到达 C 处后,测得 A 处位于 C 处的南偏西 60 ° 方向,解救后巡逻艇又沿南偏东 45 ° 方向航行到 D 处.
(1)求巡逻艇从 B 处到 C 处用的时间.
(2)求巡逻艇实际比原计划多航行了多少海里?(结果精确到1海里).
(参考数据: 3 ≈ 1 . 73 , 6 ≈ 2 . 45 )
某公司研发了一款成本为60元的保温饭盒,投放市场进行试销售,按物价部门规定,其销售单价不低于成本,但销售利润不高于 65 % ,市场调研发现,保温饭盒每天的销售数量 y (个 ) 与销售单价 x (元 ) 满足一次函数关系;当销售单价为70元时,销售数量为160个;当销售单价为80元时,销售数量为140个(利润率 = 利润 成本 × 100 \ % )
(1)求 y 与 x 之间的函数关系式;
(2)当销售单价定为多少元时,公司每天获得利润最大,最大利润为多少元?
如图, ΔABC 中, AB = AC ,点 E 是线段 BC 延长线上一点, ED ⊥ AB ,垂足为 D , ED 交线段 AC 于点 F ,点 O 在线段 EF 上, ⊙ O 经过 C 、 E 两点,交 ED 于点 G .
(1)求证: AC 是 ⊙ O 的切线;
(2)若 ∠ E = 30 ° , AD = 1 , BD = 5 ,求 ⊙ O 的半径.
如图, ▱ ABCD 的对角线 AC 、 BD 相交于点 O , EF 过点 O 且与 AB 、 CD 分别相交于点 E 、 F ,连接 EC .
(1)求证: OE = OF ;
(2)若 EF ⊥ AC , ΔBEC 的周长是10,求 ▱ ABCD 的周长.
为了解学生对校园网站五个栏目的喜爱情况(规定每名学生只能选一个最喜爱的),学校随机抽取了部分学生进行调查,将调查结果整理后绘制成如下两幅不完整的统计图,请结合图中提供的信息解答下列问题:
(1)本次被调查的学生有 人,扇形统计图中 m = ;
(2)将条形统计图补充完整;
(3)若该校有1800名学生,估计全校最喜爱“校长信箱”栏目的学生有多少人?
(4)若从3名最喜爱“校长信箱”栏目的学生和1名最喜爱“时事政治”栏目的学生中随机抽取两人参与校园网站的编辑工作,用列表或画树状图的方法求所抽取的两人都最喜爱“校长信箱”栏目的概率.