如图1,已知点D在AC上,△ABC和△ADE都是等腰直角三角形,点M为EC的中点.(1)求证:△BMD为等腰直角三角形.(2)将△ADE绕点A逆时针旋转45°,如图2中的“△BMD为等腰直角三角形”是否仍然成立?请说明理由.(3)将△ADE绕点A逆时针旋转135°,如图3中的“△BMD为等腰直角三角形”成立吗?(不用说明理由).(4)我们是否可以猜想,将△ADE绕点A任意旋转一定的角度,如图4中的“△BMD为等腰直角三角形”均成立?(不用说明理由).
解方程:
(本题12分)如图,抛物线经过的三个顶点,已知轴,点在轴上,点在轴上,且.(1)求抛物线的对称轴;(2)写出A,B,C三点的坐标(A,B,C三点的坐标只需写出答案),并求抛物线的解析式;(3)探究:若点是抛物线对称轴上且在轴下方的动点,是否存在是等腰三角形.若存在,求出所有符合条件的点坐标;不存在,请说明理由.
(本题12分)AB是⊙O的直径,点E是半圆上一动点(点E与点A、B都不重合),点C是BE延长线上的一点,且CD⊥AB,垂足为D,CD与AE交于点H,点H与点A不重合。(1)求证:△AHD∽△CBD(2)若CD=AB=2,求HD+HO的值。
(本题10分)如图所示,已知圆锥底面半径r=10cm,母线长为30cm.(1)求它的侧面展开图的圆心角和表面积.(2)若一蚂蚁从A点出发沿着圆锥侧面行到母线SA的中点B,请你动脑筋想一想它所走的最短路线是多少?为什么?
如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC与E,交BC与D.求证:(1)D是BC的中点;(2)△BEC∽△ADC;(3)BC2=2AB·CE.