如图1,已知点D在AC上,△ABC和△ADE都是等腰直角三角形,点M为EC的中点.(1)求证:△BMD为等腰直角三角形.(2)将△ADE绕点A逆时针旋转45°,如图2中的“△BMD为等腰直角三角形”是否仍然成立?请说明理由.(3)将△ADE绕点A逆时针旋转135°,如图3中的“△BMD为等腰直角三角形”成立吗?(不用说明理由).(4)我们是否可以猜想,将△ADE绕点A任意旋转一定的角度,如图4中的“△BMD为等腰直角三角形”均成立?(不用说明理由).
先阅读,再回答问题:如图1,已知△ABC中,AD为中线.延长AD至E,使DE=AD.在△ABD和△ECD中,AD=DE,∠ADB=∠EDC,BD=CD,所以,△ABD≌△ECD(SAS),进一步可得到AB=CE,AB∥CE等结论. 在已知三角形的中线时,我们经常用“倍长中线”的辅助线来构造全等三角形,并进一步解决一些相关的计算或证明题. 解决问题:如图2,在△ABC中,AD是三角形的中线,F为AD上一点,且BF=AC,连结并延长BF交AC于点E,求证:AE=EF.
如图,△ABC中,AB=AC,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点. ⑴求证:BG=CF ⑵请你判断AF、BG、AB之间的大小关系,并说明理由.
如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=50°,求∠ADC的度数.
若无意义,且,求的值.
如图,已知两点P、Q在锐角∠AOB内,分别在OA、OB上求点M、N,使PM+MN+NQ最短.