已知四边形ABCD内接于⊙O,∠ADC=90°,∠DCB<90°,对角线AC平分∠DCB ,延长DA,CB相交于点E.(1)如图1,EB=AD,求证:△ABE是等腰直角三角形;(2)如图2,连接OE,过点E作直线EF,使得∠OEF=30°,当∠ACE≥30°时,判断直线EF与⊙O的位置关系,并说明理由.
在平面直角坐标系xOy中,已知二次函数的图像经过原点及点A(1,2),与x轴相交于另一点B.(1)求:二次函数的解析式及B点坐标;(2)若将抛物线以为对称轴向右翻折后,得到一个新的二次函数,已知二次函数与x轴交于两点,其中右边的交点为C点.点P在线段OC上,从O点出发向C点运动,过P点作x轴的垂线,交直线AO于D点,以PD为边在PD的右侧作正方形PDEF(当P点运动时,点D.点E、点F也随之运动);①当点E在二次函数y1的图像上时,求OP的长.②若点P从O点出发向C点做匀速运动,速度为每秒1个单位长度,同时线段OC上另一个点Q从C点出发向O点做匀速运动,速度为每秒2个单位长度(当Q点到达O点时停止运动,P点也同时停止运动).过Q点作x轴的垂线,与直线AC交于G点,以QG为边在QG的左侧作正方形QGMN(当Q点运动时,点G、点M、点N也随之运动),若P点运动t秒时,两个正方形分别有一条边恰好落在同一条直线上(正方形在x轴上的边除外),求此刻t的值.
如图,已知△ABC的三个顶点坐标分别为A(-4,0),B(1,0),C(-2,6).(1)求经过点A,B,C三点的抛物线解析式.(2)设直线BC交y轴于点E,连结AE,求证:AE=CE;(3)设抛物线与y轴交于点D,连结AD交BC于点F,求证:以A,B,F为顶点的三角形与△ABC相似,并求:.
某农户计划利用现有的一面墙(墙长8米),再修四面墙,建造如图所示的长方体水池,培育不同品种的鱼苗.他已备足可以修高为1.5m、长18m的墙的材料准备施工,设图中与现有一面墙垂直的三面墙的长度都为xm,即AD=EF=BC=xm.(不考虑墙的厚度).(1)若想水池的总容积为36m3,x应等于多少?(2)求水池的总容积V与x的函数关系式,并直接写出x的取值范围;(3)若想使水池的总容积V最大,x应为多少?最大容积是多少?
如图,抛物线与y轴交于点A,抛物线上的一点P在第四象限,连接AP与x轴交于点C,,且S△AOC=1,过点P作PB⊥y轴于点B.(1)求BP的长;(2)求抛物线与x轴的交点坐标.
如图,函数的图象与函数()的图象交于点A(2,1)、B,与y轴交于点C(0,3).(1)求函数的表达式和点B的坐标;(2)观察图象,比较当x>0时与的大小.