若正整数a、b、c满足方程a2+b2=c2 ,则称这一组正整数(a、b、c)为“商高数”,下面列举五组“商高数”:(3,4,5),(5,12,13),(6,8,10),(7,24,25),(12,16,20),注意这五组“商高数”的结构有如下规律:根据以上规律,回答以下问题:(1)商高数的三个数中,有几个偶数,几个奇数?(2)写出各数都大于30的两组商高数。(3)用两个正整数m、n(m>n)表示一组商高数,并证明你的结论。
设a,b,c是△ABC的三条边,关于x的方程x2+x+c-a=0有两个相等的实数根,方程3cx+2b=2a的根为x=0. (1)试判断△ABC的形状. (2)若a,b为方程x2+mx-3m=0的两个根,求m的值.
如图,是定远县统计局公布的2008~2011年全社会用电量的折线统计图. (1)填写统计表: 2008~2011年定远县全社会用电量统计表:
(2)根据定远县2009年至2011年全社会用电量统计数据,求这两年年平均增长的百分率(保留两个有效数字).
为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息: 信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天; 信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍. 根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?
如图正方形网格中的△ABC,若小方格边长为1,请你根据所学的知识 (1)求△ABC的面积 (2)判断△ABC是什么形状? 并说明理由.
阅读下面的材料,回答问题: 解方程x4-5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是: 设x2=y,那么x4=y2,于是原方程可变为y2-5y+4=0①,解得y1=1,y2=4. 当y=1时,x2=1,∴x=±1; 当y=4时,x2=4,∴x=±2; ∴原方程有四个根:x1=1,x2=-1,x3=2,x4=-2. (1)在由原方程得到方程①的过程中,利用___________法达到________的目的,体现了 数学的转化思想. (2)解方程(x2+x)2-4(x2+x)-12=0.