下列网格中的六边形ABCDEF是由边长为6的正方形左上角剪去边长为2的正方形所得,该六边形按一定的方法可剪拼成一个正方形.(1)根据剪拼前后图形的面积关系求出拼成的正方形的边长;(2)如图甲,把六边形ABCDEF沿EH,BG剪成①②③三部分,请在图甲中画出将②③与①拼成的正方形,然后标出②③变动后的位置,并指出②③属于旋转、平移和轴对称中的哪一种变换;(3)在图乙中画出一种与图甲不同位置的两条裁剪线,并在图乙中画出将此六边形剪拼成的正方形.
已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴. (1)求抛物线的解析式和对称轴; (2)设点P是直线l上的一个动点,当△PAC是以AC为斜边的Rt△时,求点P的坐标; (3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由; (4)设过点A的直线与抛物线在第一象限的交点为N,当△ACN的面积为时,求直线AN的解析式.
如图, 在Rt△ABC中,∠C=90º, AC=9,BC=12,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ. 点P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0). (1)直接用含t的代数式分别表示:QB=__________, PD=___________; (2)是否存在t的值,使四边形PDBQ为平行四边形?若存在,求出t的值;若不存在,说明理由; (3)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻成为菱形,求点Q的速度.
如图,已知AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O 切线,交OD的延长线于点E,连结BE. (1)求证:BE与⊙O相切; (2)连结AD并延长交BE于点F,若OB=6,且sin∠ABC=,求BF的长.
如图,直线与y轴交于A点,与反比例函数(x>0)的图象交于点M,过M作MH⊥x轴于点H,且tan∠AHO=. (1)求k的值; (2)设点N(1,a)是反比例函数(x>0)图像上的点,在y轴上是否存在点P,使得PM+PN最小,若存在,求出点P的坐标;若不存在,请说明理由.
按要求作图并回答: 用刻度尺作线段AC (AC=5cm),以A为圆心,a为半径作圆,再以C为圆心,b为半径作圆 (其中a<5,b<5, 且要求⊙A与⊙C交于B、D两点),连结BD. (1)若能作出满足要求的两圆,则a、b应满足的条件是. (2)求证:AC⊥BD.