清明期间,某校师生组成200个小组参加“保护环境,美化家园”植树活动.综合实际情况,校方要求每小组植树量为2至5棵,活动结束后,校方随机抽查了其中50个小组,根据他们的植树量绘制出如图所示的两幅不完整统计图.请根据图中提供的信息,解答下面的问题: (1)请把条形统计图补充完整,并算出扇形统计图中,植树量为“5棵树”的圆心角是 °. (2)请你帮学校估算此次活动共种多少棵树.
先化简,再求值:,其中,
化简 (1); (2)
计算题 (1) (2) (3) (4)
定义:对于任意的三角形,设其三个内角的度数分别为x°、y°和z°,若满足,则称这个三角形为勾股三角形. (1)已知某一勾股三角形的三个内角度数从小到大依次为x°、y°和z°,且xy=2160,求x+y的值; (2)如图,△ABC是⊙O的内接三角形,AB=,AC=,BC=2,BE是⊙O的直径,交AC于D. ①求证:△ABC是勾股三角形; ②求DE的长.
已知抛物线()与轴相交于点,顶点为.直线分别与轴,轴相交于两点,并且与直线相交于点. (1)如图,将沿轴翻折,若点的对应点′恰好落在抛物线上,′与轴交于点,连结,求的值和四边形的面积; (2)在抛物线()上是否存在一点,使得以为顶点的四边形是平行四边形?若存在,求出点的坐标;若不存在,试说明理由.