解不等式组.
计算:.
如图,在直角坐标系中,直线与轴,轴分别交于点,点,对称轴为的抛物线过,两点,且交轴于另一点,连接.
(1)直接写出点,点,点的坐标和抛物线的解析式;
(2)已知点为第一象限内抛物线上一点,当点到直线的距离最大时,求点的坐标;
(3)抛物线上是否存在一点(点除外),使以点,,为顶点的三角形与相似?若存在,求出点的坐标;若不存在,请说明理由.
(1)证明推断:如图(1),在正方形中,点,分别在边,上,于点,点,分别在边,上,.
①求证:;
②推断:的值为 ;
(2)类比探究:如图(2),在矩形中,为常数).将矩形沿折叠,使点落在边上的点处,得到四边形,交于点,连接交于点.试探究与之间的数量关系,并说明理由;
(3)拓展应用:在(2)的条件下,连接,当时,若,,求的长.
襄阳市某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜.某超市看好甲、乙两种有机蔬菜的市场价值,经调查,这两种蔬菜的进价和售价如下表所示:
有机蔬菜种类
进价(元
售价(元
甲
16
乙
18
(1)该超市购进甲种蔬菜和乙种蔬菜需要170元;购进甲种蔬菜和乙种蔬菜需要200元.求,的值;
(2)该超市决定每天购进甲、乙两种蔬菜共进行销售,其中甲种蔬菜的数量不少于,且不大于.实际销售时,由于多种因素的影响,甲种蔬菜超过的部分,当天需要打5折才能售完,乙种蔬菜能按售价卖完.求超市当天售完这两种蔬菜获得的利润额(元与购进甲种蔬菜的数量之间的函数关系式,并写出的取值范围;
(3)在(2)的条件下,超市在获得的利润额(元取得最大值时,决定售出的甲种蔬菜每千克捐出元,乙种蔬菜每千克捐出元给当地福利院,若要保证捐款后的盈利率不低于,求的最大值.
如图,点是的内心,的延长线和的外接圆相交于点,过作直线.
(1)求证:是的切线;
(2)若,,求优弧的长.