(·湖北武汉,24题,分)(本题12分)已知抛物线y=+c与x轴交于A(-1,0),B两点,交y轴于点C (1) 求抛物线的解析式 (2) 点E(m,n)是第二象限内一点,过点E作EF⊥x轴交抛物线于点F,过点F作FG⊥y轴于点G,连接CE、CF,若∠CEF=∠CFG,求n的值并直接写出m的取值范围(利用图1完成你的探究) (3) 如图2,点P是线段OB上一动点(不包括点O、B),PM⊥x轴交抛物线于点M,∠OBQ=∠OMP,BQ交直线PM于点Q,设点P的横坐标为t,求△PBQ的周长
如图,在三棱柱中,侧面,均为正方形,∠,点是棱的中点. (Ⅰ)求证:⊥平面; (Ⅱ)求证:平面; (Ⅲ)求二面角的余弦值.
已知x=1是函数的一个极值点, (Ⅰ)求a的值; (Ⅱ)当时,证明:
在中,分别为角的对边,△ABC的面积S满足. (1)求角的值; (2)若,设角的大小为用表示,并求的取值范围.
已知(a是常数,a∈R) (Ⅰ)当a=1时求不等式的解集; (Ⅱ)如果函数恰有两个不同的零点,求a的取值范围.
已知直线是过点,方向向量为的直线,圆方程 (1)求直线的参数方程 (2)设直线与圆相交于两点,求的值