(乐山)如图1,二次函数的图象与轴分别交于A、B两点,与轴交于点C.若tan∠ABC=3,一元二次方程的两根为-8、2.(1)求二次函数的解析式;(2)直线绕点A以AB为起始位置顺时针旋转到AC位置停止,与线段BC交于点D,P是AD的中点.①求点P的运动路程;②如图2,过点D作DE垂直轴于点E,作DF⊥AC所在直线于点F,连结PE、PF,在运动过程中,∠EPF的大小是否改变?请说明理由;(3)在(2)的条件下,连结,求△PEF周长的最小值.
在平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为“梦之点”.例如点(-1,-1),(0,0),(,),……都是“梦之点”,显然,这样的“梦之点”有无数个.(1)若点P(2,m)是反比例函数(n为常数,n≠0)的图象上的“梦之点”,求这个反比例函数的解析式;(2)函数y=3kx+s-1(k,s是常数)的图象上存在“梦之点”吗?若存在,请求出“梦之点”的坐标;若不存在,请说明理由;(3)若二次函数y=ax2+bx+1(a,b是常数,a>0)的图象上存在两个不同的“梦之点”A(x1,y1),B(x2,y2),且满足-2<x1<2,|x1-x2|=2,令,试求t的取值范围.
如图,在平面直角坐标系中,双曲线和直线y=kx+b交于A,B两点,点A的坐标为(-3,2),BC⊥y轴于点C,且OC=6BC.(1)求双曲线和直线的解析式;(2)直接写出不等式的解集.
已知反比例函数(k为常数,k≠1).(1)其图象与正比例函数y=x的图象的一个交点为P.若点P的纵坐标是2,求k的值;(2)若在其图象的每一支上,y随x的增大而减小,求k的取值范围;(3)若其图象的一支位于第二象限,在这一支上任取两点A(x1,y1),B(x2,y2),当y1>y2时,试比较x1与x2的大小.
已知A(0,-6),B(-3,0),C(m,2)三点在同一直线上,试求出图象经过其中一点的反比例函数的解析式,并在图中画出其图象.(要求标出必要的点,可不写画法)
已知:y=y1+y2,y1与x2成正比例,y2与x成反比例,且x=1时,y=3;x=-1时,y=1.求时,y的值.