(攀枝花)如图,已知抛物线与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C,抛物线的对称轴与抛物线交于点P、与直线BC相交于点M,连接PB.(1)求该抛物线的解析式;(2)在(1)中位于第一象限内的抛物线上是否存在点D,使得△BCD的面积最大?若存在,求出D点坐标及△BCD面积的最大值;若不存在,请说明理由.(3)在(1)中的抛物线上是否存在点Q,使得△QMB与△PMB的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.
已知一次函数的图象过点(3,5)与(,),且该图象与x轴、y轴分别交于点A、点B,点O为坐标原点, (1)求这个一次函数表达式; (2)求△OAB的面积.
已知△ABC中∠BAC=150°,AB、AC的垂直平分线分别交BC于E、F.求∠EAF的度数.
如图,点P是∠ABC的平分线上一点,PM⊥AB,PN⊥BC,垂足分别是M、N. 求证:(1)∠PMN=∠PNM; (2)BM=BN.
如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD. 求证:(1)BC=AD; (2)△OAB是等腰三角形.
已知:如图,菱形ABCD中,对角线AC,BD相交于点O,且AC=12cm,BD=16cm.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,直线EF从点D出发,沿DB方向匀速运动,速度为1cm/s,EF⊥BD,且与AD,BD,CD分别交于点E,Q,F;当直线EF停止运动时,点P也停止运动.连接PF,设运动时间为t(s)(0<t<8).解答下列问题: (1)当t为何值时,四边形APFD是平行四边形? (2)设四边形APFE的面积为y(cm2),求y与t之间的函数关系式; (3)是否存在某一时刻t,使S四边形APFE:S菱形ABCD=17:40?若存在,求出t的值,并求出此时P,E两点间的距离;若不存在,请说明理由.