(遂宁)如图,已知抛物线经过A(﹣2,0),B(4,0),C(0,3)三点.(1)求该抛物线的解析式;(2)在y轴上是否存在点M,使△ACM为等腰三角形?若存在,请直接写出所有满足要求的点M的坐标;若不存在,请说明理由;(3)若点P(t,0)为线段AB上一动点(不与A,B重合),过P作y轴的平行线,记该直线右侧与△ABC围成的图形面积为S,试确定S与t的函数关系式.
甲口袋中装有2个小球,它们分别标有数字1、2,乙口袋中装有3个小球,它们分别标有数字3、4、5.现分别从甲、乙两个口袋中随机地各取出1个小球,请你用列举法(画树状图或列表的方法)求取出的两个小球上的数字之和为5的概率.
如图,某同学在测量建筑物AB的高度时,在地面的C处测得点A的仰角为30°,向前走60米到达D处,在D处测得点A的仰角为45°,求建筑物AB的高度.
已知:如图,在△ABC中,∠A=30°, tanB=,AC=18,求BC、AB的长.
已知二次函数的图象如图所示,它与x轴的一个交点的坐标为(-1,0),与y轴的交点坐标为(0,-3). (1)求此二次函数的解析式; (2)求此二次函数的图象与x轴的另一个交点的坐标; (3)根据图象回答:当x取何值时,y<0?
已知反比例函数的图象经过点A(1,3). (1)试确定此反比例函数的解析式; (2)当=2时, 求y的值; (3)当自变量从5增大到8时,函数值y是怎样变化的?