(遂宁)如图,已知抛物线经过A(﹣2,0),B(4,0),C(0,3)三点.(1)求该抛物线的解析式;(2)在y轴上是否存在点M,使△ACM为等腰三角形?若存在,请直接写出所有满足要求的点M的坐标;若不存在,请说明理由;(3)若点P(t,0)为线段AB上一动点(不与A,B重合),过P作y轴的平行线,记该直线右侧与△ABC围成的图形面积为S,试确定S与t的函数关系式.
解方程: (1);(2)
合并同类项 (1) (2)
如图,点在轴的正半轴上,,,.点从点出发,沿轴向左以每秒1个单位长的速度运动,运动时间为秒. (1)点的坐标是 ; (2)当时,求的值; (3)以点为圆心,为半径的随点的运动而变化,当与四边形的边(或边所在的直线)相切时,求的值.
如图,四边形OABC是平行四边形,以O为圆心,OA为半径的圆交AB于D,延长 AO交⊙O于E,连接CD,CE,若CE是⊙O的切线,解答下列问题: (1)求证:CD是⊙O的切线; (2)若平行四边形OABC的两边长是方程的两根,求平行四边形OABC的面积.
如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O的另一个交点为E,连结AC,CE。 (1)求证:∠B=∠D; (2)若AB= ,BC-AC=2,求CE的长。