(资阳)学校需要购买一批篮球和足球,已知一个篮球比一个足球的进价高30元,买两个篮球和三个足球一共需要510元.(1)求篮球和足球的单价;(2)根据实际需要,学校决定购买篮球和足球共100个,其中篮球购买的数量不少于足球数量的,学校可用于购买这批篮球和足球的资金最多为10500元.请问有几种购买方案?(3)若购买篮球x个,学校购买这批篮球和足球的总费用为y(元),在(2)的条件下,求哪种方案能使y最小,并求出y的最小值.
如图,AB是半圆O的直径,点M是半径OA的中点,点P在线段AM上运动(不与点M重合),点Q在半圆O上运动,且总保持PQ=PO,过点Q作⊙O的切线交BA的延长线于点C. (1)当∠QPA=60°时,请你对△QCP的形状做出猜想,并给予证明; (2)当QP⊥AB时,△QCP的形状是 三角形; (3)由(1)、(2)得出的结论,请进一步猜想当点P在线段AM上运动到任何位置时,△QCP一定是 三角形.
如图在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C在坐标轴上,顶点B的坐标为(4,2).过点D(0,3)和E(6,0)的直线分别与AB,BC交于点M,N. (1)求点M的坐标; (2)若反比例函数 y=(x>0)的图象经过点M,通过计算判断点N是否在该函数的图象上; (3)在(2)的条件下观察图形,当x取何值时,一次函数值小于反比例函数值.
如图(1),格点△ABC(顶点在小正方形的顶点处的三角形称为格点三角形),请在图(2)、(3)、(4)中的6×6的网格中各画一个互不全等的格点三角形,使它们都和△ABC相似. 要求:①其中有一个相似比为;②其中有一个面积为5.
已知O是平面直角坐标系的原点,点A(1,n),B(﹣1,﹣n)(n>0),AB的长是,若点C在x轴上,且OC=AC,求点C的坐标.
判断关于x的方程x2+px+(p﹣2)=0的根的情况.