如图,平面直角坐标系中,已知点(2,3),线段垂直于轴,垂足为,将线段绕点A逆时针方向旋转,点落在点处,直线与轴的交于点.(1)试求出点的坐标;(2)试求经过、、三点的抛物线的表达式,并写出其顶点E的坐标;(3)在(2)中所求抛物线的对称轴上找点,使得以点、、为顶点的三角形与△相似.
如图,已知BC是⊙O的直径,AH⊥BC,垂足为D,点A为弧EF的中点,BF交AD于点E,且BE·EF=32,AD=6. (1)求证:AE=BE; (2)求DE的长; (3)求BD的长 .
如图,已知二次函数的图象与轴相交于两个不同的点、,与轴的交点为.设的外接圆的圆心为点. (1)求与轴的另一个交点D的坐标; (2)如果恰好为的直径,且的面积等于,求和的值.
我市某镇组织20辆汽车装运完A、B、C三种脐橙共100吨到外地销售。按计划,20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满。根据下表提供的信息,解答以下问题:
(1)设装运A种脐橙的车辆数为,装运B种脐橙的车辆数为,求与之间的函数关系式; (2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案; (3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值。
学校为了解学生参加体育活动的情况,对学生“平均每天参加体育活动的时间”进行了随机抽样调查,下图是根据调查结果绘制的两幅不完整的统计图. 请你根据统计图提供的信息,解答以下问题: (1)“平均每天参加体育活动的时间”“为0.5~1小时”部分的扇形统计图的圆心角为______度; (2)本次一共调查了_________名学生; (3)将条形统计图补充完整; (4)若该校有2000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.
已知关于x的方程 kx2-2 (k+1) x+k-1="0" 有两个不相等的实数根, (1)求k的取值范围; (2)是否存在实数k,使此方程的两个实数根的倒数和等于0 ?若存在,求出k的值;若不存在,说明理由.