(巴中)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点三角形ABC(项点是网格线的交点). (1)先将△ABC竖直向上平移6个单位,再水平向右平移3个单位得到△A1B1C1,请画出△A1B1C1; (2)将△A1B1C1绕B1点顺时针旋转90°,得△A2B1C2,请画出△A2B1C2; (3)线段B1C1变换到B1C2的过程中扫过区域的面积为 .
如图所示,已知AB∥CD ,BC∥DE,若∠B=55°,求∠D的度数.
学习完统计知识后,小兵就本班同学的上学方式进行调查统计.他通过收集数据后绘制的两幅不完整的统计图如下图所示.请你根据图中提供的信息解答下列问题:(1)求该班共有多少名学生;(2)请将表示“步行”部分的条形统计图补充完整;(3)在扇形统计图中,“骑车”部分扇形所对应的圆心角是多少度;(4)若全年级共1000名学生,估计全年级步行上学的学生有多少名.
解不等式组,并把其解集在数轴上表示出来.
解方程组: .
如图,AD∥BC,∠A=90°,E是AB上的一点,且AD=BE,∠1=∠2.(1)Rt△ADE与Rt△BEC全等吗?请写出必要的推理过程;(2)△CED是不是直角三角形?请说明理由;(3)若已知AD=6,AB=14,请求出请求出△CED的面积.