(南充)已知抛物线与x轴交于点A(m﹣2,0)和B(2m+1,0)(点A在点B的左侧),与y轴相交于点C,顶点为P,对称轴为l:x=1.(1)求抛物线解析式.(2)直线()与抛物线相交于两点M(,),N(,)(),当最小时,求抛物线与直线的交点M与N的坐标.(3)首尾顺次连接点O、B、P、C构成多边形的周长为L,若线段OB在x轴上移动,求L最小值时点O,B移动后的坐标及L的最小值.
我们知道:若x2=9,则x=3或x=-3.因此,小南在解方程x2+2x-8=0时,采用了以下的方法:解:移项,得x2+2x=8:两边都加上l,得x2+2x+1=8+1,所以(x+1) 2=9;则x+1=3或x+1=-3:所以x=2或x=-4.小南的这种解方程方法,在数学上称之为配方法.请用配方法解方程x2-4x-5=0.
如图,有两条公路OM,ON相交成30°,沿公路OM方向离两条公路的交叉处O点80米的A处有一所希望小学,当拖拉机沿ON方向行驶时,路两旁50米内会受到噪音影响,已知有两台相距30米的拖拉机正沿ON方向行驶,它们的速度均为5米/秒,问这两台拖拉机沿ON方向行驶时给小学带来噪音影响的时间是多少?
作图:(1)在图1中画出△ABC关于点O的中心对称图形。(2)正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形,在图2正方形网格(每个小正方形边长为1)中画出格点△DEF,使DE=DF=5,EF= (图1) (图2)
已知:如图,E、F分别是▱ABCD的边AD、BC的中点.求证:AF=CE.
求各式中的实数x:(x+10)=-27;