(攀枝花)如图,已知抛物线与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C,抛物线的对称轴与抛物线交于点P、与直线BC相交于点M,连接PB.(1)求该抛物线的解析式;(2)在(1)中位于第一象限内的抛物线上是否存在点D,使得△BCD的面积最大?若存在,求出D点坐标及△BCD面积的最大值;若不存在,请说明理由.(3)在(1)中的抛物线上是否存在点Q,使得△QMB与△PMB的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.
计算:
四边形中,∥,,,.点为射线上动点(不与点、重合),点在直线上,且.记,,,. (1)当点在线段上时,写出并证明与的数量关系; (2)随着点的运动,(1)中得到的关于与的数量关系,是否改变?若认为不改变,请证明;若认为会改变,请求出不同于(1)的数量关系,并指出相应的的取值范围; (3)若cos=,试用的代数式表示.
已知直线与轴交于点,与轴交于点,将三角形绕点顺时针旋转90°,使点落在点,点落在点,抛物线过点、、,其对称轴与直线交于点. (1)求抛物线的表达式; (2)求的正切值; (3)点在轴上,且△与△相似,求点的坐标.
如图,在△中,是边上的一点,是的中点,过作的平行线交的延长线于点,且,连结. (1)求证:; (2)如果,试判断四边形的形状,并证明你的结论。
为了解某社区居民在一次爱心活动中的捐款情况,对该社区部分捐款户的捐款情况进行了调查,并将有关数据整理成如图所示的统计图(不完整).已知、两组捐款户数直方图的高度比为1:5,请结合图中相关数据回答下列问题. (1)组的频数是;本次调查样本的容量; (2)组的频数是; (3)请补全直方图; (4)若该社区有500户住户,则估计捐款不少于300元的户数.