(达州)学校为了奖励初三优秀毕业生,计划购买一批平板电脑和一批学习机,经投标,购买1台平板电脑比购买3台学习机多600元,购买2台平板电脑和3台学习机共需8400元.(1)求购买1台平板电脑和1台学习机各需多少元?(2)学校根据实际情况,决定购买平板电脑和学习机共100台,要求购买的总费用不超过168000元,且购买学习机的台数不超过购买平板电脑台数的1.7倍.请问有哪几种购买方案?哪种方案最省钱?
市教育局自实施新课程改革后,学生的自主学习、合作交流能力有很大提高.张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,将调查结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,张老师一共调查了 名同学;(2)将上面的条形统计图补充完整;(3)为了共同进步,张老师想从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法列出所有等可能的结果,并求出所选两位同学恰好是一位男同学和一位女同学的概率.
两座建筑AB与CD,其地面距离AC为60米,从AB的顶点B测得CD的顶部D的仰角β=30°,测得其底部C的俯角α=60°,求两座建筑物AB与CD的高.(结果保留根号)
(1)计算:.(2)先化简,再求值:,其中满足.
已知正比例函数反比例函数由构造一个新函数其图象如图所示.(因其图象似双钩,我们称之为“双钩函数” ).给出下列几个命题:①该函数的图象是中心对称图形;②当时,该函数在时取得最大值-2; ③的值不可能为1; ④在每个象限内,函数值随自变量的增大而增大. 其中正确的命题是 .(请写出所有正确的命题的序号)
如图,已知抛物线y=ax2+bx+c(经过原点)与x轴相交于N点,直线y=kx+4与坐标轴分别相交于A、D两点,与抛物线相交于B(1,m)和C(2,2)两点.(1)求直线与抛物线的表达式;(2)求证:C点是△AOD的外心;(3)若(1)中的抛物线,在x轴上方的部分,有一动点P(x,y),设∠PON=α.当sinα为何值时,△PON的面积有最大值?(4)若P点保持(3)中运动路线,是否存在△PON,使得其面积等于△OCN面积的?若存在,求出动点P的位置;若不存在,请说出理由.