(眉山)(本小题满分9分)某厂为了丰富大家的业余生活,组织了一次工会活动,准备一次性购买若干钢笔和笔记本(每支钢笔的价格相同,每本笔记本的价格相同)作为奖品.若购买2支钢笔和3本笔记本共需62元,购买5支钢笔和1本笔记本共需90元.(1)购买一支钢笔和一本笔记本各需多少元?(2)工会准备购买钢笔和笔记本共80件作奖品,根据规定购买的总费用不超过1100元,则工会最多可以购买多少支钢笔?
已知关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有两个不相等的实数根. (1)求实数k的取值范围; (2)0可能是方程的一个根吗?若是,请求出它的另一个根;若不是,请说明理由.
在建立平面直角坐标系的方格纸中,每个小方格都是边长为1的小正方形,△ABC的顶点均在格点上,点P的坐标为(﹣1,0),请按要求画图与作答. (1)把△ABC绕点P旋转180°得△A′B′C′. (2)把△ABC向右平移7个单位得△A″B″C″. (3)△A′B′C′与△A″B″C″是否成中心对称,若是,找出对称中心P′,并写出其坐标.
(1)计算:(2﹣)+2;(2)解方程:2x2﹣2x+1=0.
有一个二次函数的图象,三位学生分别说出了它的一些特点. 甲:对称轴是直线x=4; 乙:与x轴两交点的横坐标都是整数; 丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3; 请写出满足上述全部特点的二次函数解析式:
如图,在平面直角坐标系xOy中,AB在x轴上,以AB为直径的半⊙O’与y轴正半轴交于点C,连接BC,AC.CD是半⊙O’的切线,AD⊥CD于点D. (1)求证:∠CAD =∠CAB; (2)已知抛物线过A、B、C三点,AB=10,tan∠CAD=. ① 求抛物线的解析式; ② 判断抛物线的顶点E是否在直线CD上,并说明理由; ③ 在抛物线上是否存在一点P,使四边形PBCA是直角梯形.若存在,直接写出点P的坐标(不写求解过程);若不存在,请说明理由.