(内江)(1)填空:= ; = ; = . (2)猜想:= (其中n为正整数,且). (3)利用(2)猜想的结论计算:.
某中学积极开展跳绳活动,体育委员统计了全班同学1分钟跳绳的次数,并列出了频数分布表:
(1)跳绳次数x在120≤x<140范围的同学占全班同学的20%,在答题卡中完成上表;(2)画出适当的统计图,表示上面的信息.
如图,AD∥BC,BD平分∠ABC.求证:AB=AD.
解方程组.
如图,在平面直角坐标系中,二次函数的图象与x轴交于A、B两点,B点的坐标为(3,0),与y轴交于点C(0,-3),点P是直线BC下方抛物线上的一个动点.(1)求二次函数解析式;(2)连接PO,PC,并将△POC沿y轴对折,得到四边形.是否存在点P,使四边形为菱形?若存在,求出此时点P的坐标;若不存在,请说明理由;(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.
如图,AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC=∠BAC. (1)求证:EF是⊙O的切线;(2)求证:AC2=AD·AB; (3)若⊙O的半径为2,∠ACD=300,求图中阴影部分的面积.