【问题提出】如图①,已知⊿ABC是等边三角形,点E在线段AB上,点D在直线BC上,且DE=EC,将⊿BCE绕点C顺时针旋转至⊿ACF,连接EF。试证明:AB=DB+AF。【类比探究】(1)如图②,如果点E在线段AB的延长线上,其它条件不变,线段AB、DB、AF之间又有怎样的数量关系?请说明理由。(2)如果点E在线段BA的延长线上,其他条件不变,请在图③的基础上将图形补充完整,并写出AB,DB,AF之间数量关系,不必说明理由。
如图,已知抛物线与x轴的一个交点为A(-1,0),另一个交点为B,与y轴的交点为C(0,-3),其顶点为D,对称轴为直线.(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ACM是以AC为一腰的等腰三角形时,求点M的坐标;(3)将△OBC沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形△EFG,将△EFG与△BCD重叠部分的面积记为S,用含m的代数式表示S.
在四边形ABCD中,对角线AC、BD相交于点O,将△COD绕点O按逆时针方向旋转得到△C1OD1,旋转角为θ(0°<θ<90°),连接AC1、BD1,AC1与BD1交于点P.(1)如图1,若四边形ABCD是正方形.①求证:△AOC1≌△BOD1.②请直接写出AC1与BD1的位置关系.(2)如图2,若四边形ABCD是菱形,AC=5,BD=7,设AC1=kBD1.判断AC1与BD1的位置关系,说明理由,并求出k的值.(3)如图3,若四边形ABCD是平行四边形,AC=5,BD=10,连接DD1,设AC1=kBD1.请直接写出k的值和的值.
已知二次函数(为常数,且)的图象过点A(0,1),B(1,-2)和点C(-1,6).(1)求二次函数表达式;(2)若,比较与的大小;(3)将抛物线平移,平移后图象的顶点为,若平移后的抛物线与直线有且只有一个公共点,请用含的代数式表示.
(1)如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,EF分别是 BC,CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是延长FD到点G,使DG=BE,连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是 ;探索延伸:(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.
如图,在△ABC中,∠ABC=90°,以AB为直径的⊙O与边AC交于点D,过点D的直线交BC边于点E,∠BDE=∠A.(1)证明:DE是⊙O的切线;(2)若⊙O的半径R=5,tanA=,求线段CD的长.