如图,已知,在△ABC中,CA=CB,∠ACB=90°,E,F分别是CA,CB边的三等分点,将△ECF绕点C逆时针旋转α角(0°<α<90°),得到△MCN,连接AM,BN.(1)求证:AM=BN;(2)当MA∥CN时,试求旋转角α的余弦值.
深圳市政府计划投资1.4万亿元实施东进战略.为了解深圳市民对东进战略的关注情况.某校数学兴趣小组随机采访部分深圳市民,对采访情况制作了统计图表的一部分如下:
关注情况
频数
频率
A.高度关注
m
0.1
B.一般关注
100
0.5
C.不关注
30
n
D.不知道
50
0.25
(1)根据上述统计图可得此次采访的人数为 人, m= , n= ;
(2)根据以上信息补全条形统计图;
(3)根据上述采访结果,请估计在15000名深圳市民中,高度关注东进战略的深圳市民约有 人.
解不等式组: 5 x - 1 < 3 ( x + 1 ) 2 x - 1 3 - 1 ≤ 5 x + 1 2 .
如图,点 C为△ ABD的外接圆上的一动点(点 C不在 BAD ̂ 上,且不与点 B, D重合),∠ ACB=∠ ABD=45°
(1)求证: BD是该外接圆的直径;
(2)连结 CD,求证: 2 AC = BC + CD ;
(3)若△ ABC关于直线 AB的对称图形为△ ABM,连接 DM,试探究 DM 2, AM 2, BM 2三者之间满足的等量关系,并证明你的结论.
已知抛物线 y= mx 2+(1﹣2 m) x+1﹣3 m与 x轴相交于不同的两点 A、 B
(1)求 m的取值范围;
(2)证明该抛物线一定经过非坐标轴上的一点 P,并求出点 P的坐标;
(3)当 1 4 < m≤8时,由(2)求出的点 P和点 A, B构成的△ ABP的面积是否有最值?若有,求出该最值及相对应的 m值.
如图,在平面直角坐标系 xOy中,直线 y=﹣ x+3与 x轴交于点 C,与直线 AD交于点 A 4 3 , 5 3 ,点 D的坐标为(0,1)
(1)求直线 AD的解析式;
(2)直线 AD与 x轴交于点 B,若点 E是直线 AD上一动点(不与点 B重合),当△ BOD与△ BCE相似时,求点 E的坐标.