已知抛物线与x轴交于点A(α,0),B(β,0),且,(1)求抛物线的解析式.(2)抛物线的对称轴为l,与y轴的交点为C,顶点为D,点C关于l的对称点为E,是否存在x轴上的点M,y轴上的点N,使四边形DNME的周长最小?若存在,请画出图形(保留作图痕迹),并求出周长的最小值;若不存在,请说明理由.(3)若点P在抛物线上,点Q在x轴上,当以点D、E、P、Q为顶点的四边形是平行四边形时,求点P的坐标.
计算:
如图,四边形ABCD是梯形,,PC是抛物线的对称轴,且. (1)求抛物线的函数表达式; (2)求点D的坐标; (3)求直线AD的函数表达式; (4)PD与AD垂直吗?
正方形ABCD的边长为8,正方形EFGH的边长为3,正方形EFGH可在线段AD上滑动. EC交AD于点M. 设AF=x,FM=y,△ECG的面积为s. (1)求y与x之间的关系; (2)求s与x之间的关系; (3)求s的最大值和最小值; (4)若放宽限制条件,使线段FG可在射线AD上滑动,直接写出s与x之间的关系.
如图,∠C=90°,∠CAE=∠ABC,AC=2,BC=3. (1)判断AE与⊙O的位置关系,并说明理由; (2)求OB的长;