本题满分10分)为打造“书香校园”,某学校计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.(1)问符合题意的组建方案有几种?请你帮学校设计出来;(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明在(1)中哪种方案费用最低?最低费用是多少元?
如图所示,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作BE的平行线与线段ED的延长线交于点F,连结AE、CF. (1)求证:AF=CE; (2)若AC=EF,试判断四边形AFCE是什么样的四边形,并证明你的结论
如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F. (1)求证:EO=FO; (2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论. (3)在(2)的条件下,当△ABC满足什么条件时,四边形AECF是正方形?
如图,正方形ABCD绕点A逆时针旋转no后得到正方形AEFG,EF与CD交于点O. (1)以图中已标有字母的点为端点连结两条线段(正方形的对角线除外),要求所连结的两条线段相交且互相垂直,并说明这两条线段互相垂直的理由; (2)若正方形的边长为2cm,重叠部分(四边形AEOD)的面积为cm2,求旋转的角度n.
如图,在和中,,,>,,点、、在直线上, (1)按下列要求画图(保留画图痕迹): ①画出点关于直线的对称点,连接、; ②以点为旋转中心,将(1)中所得按逆时针方向旋转,使得旋转后的线段与重合,得到(A),画出. (2)解决下面问题: ①线段和线段的位置关系是.并说明理由. ②求∠的度数.
如图,在四边形中,E、F、G、H分别是、、、的中点. (1)请判断四边形的形状.并说明为什么? (2)若使四边形为正方形,那么四边形的对角线应具有怎样的性质?