(·吉林长春)如图,在等边中,于点,点在边上运动,过点作与边交于点,连结,以为邻边作□,设□与重叠部分图形的面积为,线段的长为(1)求线段的长(用含的代数式表示);(2)当四边形为菱形时,求的值;(3)求与之间的函数关系式;(4)设点关于直线的对称点为点,当线段的垂直平分线与直线相交时,设其交点为,当点与点位于直线同侧(不包括点在直线上)时,直接写出的取值范围.
为丰富学生的学习生活,某校九年级1班组织学生参加春游活动,所联系的旅行社收费标准如下: 如果人数超过25人,每增加1人,人均活动费用降低2元,但人均活动费用不得低于75元. 如果人数不超过25人,人均活动费用为100元. 春游活动结束后,该班共支付给该旅行社活动费用2800元,请问该班共有多少人参加这次春游活动?
如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABO的三个顶点A、B、O都在格点上. (1)画出△ABO绕点O逆时针旋转90°后得到的△A1B1O三角形; (2)点B的运动路径的长; (3)求△ABO在上述旋转过程中所扫过的面积.
已知关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1,x2. (1)求k的取值范围; (2)若|x1+x2|=x1x2﹣1,求k的值.
解方程:x2﹣5x+2=0.
如图,正方形ABCO的顶点A,C分别在x轴,y轴上,O为坐标原点,点B在第二象限,边长为m,双曲线线y=(x≠0)经过BC的中点H. (1)用m的代数式表示出k; (2)当m=3时,过B作直线BD,分别交x轴,y轴于G、F,分别交双曲线线y=(x≠0)的两个分支于E、D,求证:GE=DF; (3)在(2)的前提下,将直线BD绕点B旋转适当的角度在第二象限与双曲线线y=(x≠0)交于P、Q,分别过P、Q作直线AC的垂线PM、QN,垂足为M、N,试探究PQ与PM+QN的数量关系并证明.