(·辽宁葫芦岛)某中学要进行理、化实验加试,需用九年级两个班级的学生整理实验器材.已知一班单独整理需要30分钟完成.(1)如果一班与二班共同整理15分钟后,一班另有任务需要离开,剩余工作由二班单独整理15分钟才完成任务,求二班单独整理这批实验器材需要多少分钟?(2)如果一、二的工作效率不变,先由二班单独整理,时间不超过20分钟,剩余工作再由一班独立完成,那么整理完这批器材一班至少还需要多少分钟?
某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村组织村民加工包装土特产销售给游客,以增加村民收入.已知某种土特产每袋成本10元.试销阶段每袋的销售价 x (元 ) 与该土特产的日销售量 y (袋 ) 之间的关系如表:
x (元 )
15
20
30
…
y (袋 )
25
10
若日销售量 y 是销售价 x 的一次函数,试求:
(1)日销售量 y (袋 ) 与销售价 x (元 ) 的函数关系式;
(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?
某地区在所有中学开展《老师,我想对你说》心灵信箱活动,为师生之间的沟通增设了一个书面交流的渠道.为了解两年来活动开展的情况,某课题组从全地区随机抽取部分中学生进行问卷调查.对“两年来,你通过心灵信箱给老师总共投递过几封信?”这一调查项设有四个回答选项,选项 A :没有投过;选项 B :一封;选项 C :两封;选项 D :三封及以上.根据接受问卷调查学生的回答,统计出各选项的人数以及所占百分比,分别绘制成如下条形统计图和扇形统计图:
(1)此次抽样调查了 名学生,条形统计图中 m = , n = ;
(2)请将条形统计图补全;
(3)接受问卷调查的学生在活动中投出的信件总数至少有 封;
(4)全地区中学生共有110000名,由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有多少名?
如图,点 P 在 ⊙ O 外, PC 是 ⊙ O 的切线, C 为切点,直线 PO 与 ⊙ O 相交于点 A 、 B .
(1)若 ∠ A = 30 ° ,求证: PA = 3 PB ;
(2)小明发现, ∠ A 在一定范围内变化时,始终有 ∠ BCP = 1 2 ( 90 ° − ∠ P ) 成立.请你写出推理过程.
(1)数学理解:如图①, ΔABC 是等腰直角三角形,过斜边 AB 的中点 D 作正方形 DECF ,分别交 BC , AC 于点 E , F ,求 AB , BE , AF 之间的数量关系;
(2)问题解决:如图②,在任意直角 ΔABC 内,找一点 D ,过点 D 作正方形 DECF ,分别交 BC , AC 于点 E , F ,若 AB = BE + AF ,求 ∠ ADB 的度数;
(3)联系拓广:如图③,在(2)的条件下,分别延长 ED , FD ,交 AB 于点 M , N ,求 MN , AM , BN 的数量关系.
如图,二次函数 y = x 2 + bx + c 的图象与 x 轴交于 A , B 两点,与 y 轴交于点 C ,且关于直线 x = 1 对称,点 A 的坐标为 ( − 1 , 0 ) .
(1)求二次函数的表达式;
(2)连接 BC ,若点 P 在 y 轴上时, BP 和 BC 的夹角为 15 ° ,求线段 CP 的长度;
(3)当 a ⩽ x ⩽ a + 1 时,二次函数 y = x 2 + bx + c 的最小值为 2 a ,求 a 的值.