某公司拟用运营指数y来量化考核司机的工作业绩,运营指数(y)与运输次数(n)和平均速度(x)之间满足关系式为y=ax2+bnx+100,当n=1,x=30时,y=190;当n=2,x=40时,y=420用含x和n的式子表示y;当运输次数定为3次,求获得最大运营指数时的平均速度;若n=2,x=40,能否在n增加m%(m>0),同时x减少m%的情况下,而y的值保持不变,若能,求出m的值;若不能,请说明理由。参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(-,)
如图,在中,AD是BC边上的高,。 (1)求证:AC=BD (2)若,求AD的长。
已知抛物线过点A(-1,0),B(0,6),对称轴为直线x=1 (1)求抛物线的解析式 (2)画出抛物线的草图 (3)根据图象回答:当x取何值时,y>0
已知:关于x的方程 (1) 当m取何值时,方程有两个实数根? (2) 为m选取一个合适的整数,使方程有两个不相等的实数根,并求这两个根.
如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,AC=6,CD=。 求(1)∠DAC的度数;(2)AB,BD的长。
若抛物线的顶点坐标是(1,16),并且抛物线与轴两交点间的距离为8,(1)试求该抛物线的关系式; (2)求出这条抛物线上纵坐标为12的点的坐标。