(本小题满分16分)已知函数 , . (Ⅰ)当时,求曲线在点处的切线方程; (Ⅱ)当时,求函数的单调区间; (Ⅲ)当时,函数在上的最大值为,若存在,使得 成立,求实数b的取值范围.
如图,在平面直角坐标系xOy中,椭圆C:=1(a>b>0)的离心率为,以原点为圆心,椭圆C的短半轴长为半径的圆与直线x-y+2=0相切. (1)求椭圆C的方程; (2)已知点P(0,1),Q(0,2).设M、N是椭圆C上关于y轴对称的不同两点,直线PM与QN相交于点T,求证:点T在椭圆C上.
已知椭圆C:=1(a>b>0)的离心率为,F为椭圆的右焦点,M、N两点在椭圆C上,且=λ(λ>0),定点A(-4,0). (1)求证:当λ=1时,⊥; (2)若当λ=1时,有·=,求椭圆C的方程..
椭圆=1的焦点为F1、F2,点P为椭圆上的动点,当∠F1PF2为钝角时,求点P的横坐标x0的取值范围.
若椭圆=1的焦距为2,求椭圆上的一点到两个焦点的距离之和.
根据下列条件求椭圆的标准方程: (1)两准线间的距离为,焦距为2; (2)已知P点在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为和,过P点作长轴的垂线恰好过椭圆的一个焦点.