已知,设命题:函数在上单调递增,命题:不等式,对恒成立,若且为假,或为真,求的取值范围
设递增等差数列的前n项和为,已知,是和的等比中项. (l)求数列的通项公式; (2)求数列的前n项和.
命题p:关于x的不等式,对一切恒成立;命题q:函是增函数.若p或q为真,p且q为假,求实数a的取值范围.
设函数是定义域为的奇函数. (1)求的值; (2)若,且在上的最小值为,求的值. (3)若,试讨论函数在上零点的个数情况。
对于函数 (1)探索函数的单调性,并用单调性定义证明; (2)是否存在实数使函数为奇函数?
已知函数 (1)判断函数的奇偶性,并说明理由。 (2)若,求使成立的集合。