,对岁的人群随机抽取人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:(Ⅰ)补全频率分布直方图并求、、的值;(Ⅱ)从年龄段在的“低碳族”中采用分层抽样法抽取人参加户外低碳体验活动,其中选取人作为领队,求选取的名领队中恰有1人年龄在岁的概率.
设命题p:函数的定义域为R;命题q:不等式对一切实数均成立。(1)如果p是真命题,求实数的取值范围;(2)如果命题“p或q”为真命题,且“p且q”为假命题,求实数的取值范围。
已知函数.⑴当时,①若的图象与的图象相切于点,求及的值;②在上有解,求的范围;⑵当时,若在上恒成立,求的取值范围.
如图,椭圆与椭圆中心在原点,焦点均在轴上,且离心率相同.椭圆的长轴长为,且椭圆的左准线被椭圆截得的线段长为,已知点是椭圆上的一个动点.⑴求椭圆与椭圆的方程;⑵设点为椭圆的左顶点,点为椭圆的下顶点,若直线刚好平分,求点的坐标;⑶若点在椭圆上,点满足,则直线与直线的斜率之积是否为定值?若是,求出该定值;若不是,说明理由.
如图,储油灌的表面积为定值,它的上部是半球,下部是圆柱,半球的半径等于圆柱底面半径.⑴试用半径表示出储油灌的容积,并写出的范围.⑵当圆柱高与半径的比为多少时,储油灌的容积最大?
如图,直三棱柱中,点是上一点.⑴若点是的中点,求证平面;⑵若平面平面,求证.