(本题8分)已知函数.(1)用单调性定义证明函数在上是减函数;(2)判断在上的单调性(无需证明);(3)若函数在上的值域是,求的最大值和最小值.
如下图,互相垂直的两条公路、旁有一矩形花园,现欲将其扩建成一个更大的三角形花园,要求点在射线上,点N在射线上,且直线过点,其中米,米.记三角形花园的面积为.(1)问:取何值时,取得最小值,并求出最小值;(2)若不超过1764平方米,求长的取值范围.
函数.(1)求的值;(2)求函数的最小正周期及单调递增区间.
设函数()的最小值为.(1)求;(2)已知两个正数,满足,求的最小值.
已知在平面直角坐标系中,直线的参数方程是(是参数),以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)判断直线与曲线的位置关系;(2)为曲线上任意一点,求的取值范围.
如图,已知与圆相切于点,经过点的割线交圆于点,,的平分线分别交,于点,.(1)证明:;(2)若,求的值.