如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB中点,(1)求证:AC2=AB•AD;(2)若AD=4,AB=6,求的值.
已知两个全等的直角三角形纸片ABC、DEF,如图(1)放置,点B、D重合,点F在BC上,AB与EF交于点G,∠C=∠EFB=90°,∠E=∠ABC=30°,AB=DE=4. (1)求证:△EGB是等腰三角形 (2)若纸片DEF不动,问△ABC绕点F逆时针旋转最小度时,四边形ACDE成为以ED为底的梯形(如图(2)),求此梯形的高。
如图所示,以平行四边形ABCD的顶点A为圆心,AB为半径作圆,交AD,BC于E,F,延长BA交⊙A于G,求证:弧GE=弧EF
某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元。商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?
已知一元二次方程有两个不相等的实数根. 111(1)求的取值范围; (2)如果是符合条件的最大整数,且一元二次方程与有一个相同的根,求此时的值.
如图,在直角坐标系中,的两条直角边分别在轴的负半轴,轴的负半轴上,且.将绕点按顺时针方向旋转,再把所得的像沿轴正方向平移1个单位,得. (1)写出点的坐标; (2)求点和点之间的距离.