如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB中点,(1)求证:AC2=AB•AD;(2)若AD=4,AB=6,求的值.
将进货单价为30元的商品按40元出售时,每天卖出500件。据市场调查发现,如果这种商品每件涨价1元,其每天的销售量就减少10件。(1)要使得每天能赚取8000元的利润,且尽量减少库存,售价应该定为多少?(2)售价定为多少时,每天获得的利润最大?最大利润为多少?
已知:关于x的方程kx2-(3k-1)x+2(k-1)=0(1)求证:无论k为何实数,方程总有实数根;(2)若此方程有两个实数根x1,x2,且,求k的值.
用适当方法解下列方程(1)(2)
计算(1)(2)化简求值:,其中x=-
如图1,矩形ABCD中,AB=21,AD=12,E是CD边上的一点,CE=5,M是BC边上的中点,动点P从点A出发,沿AB边以每秒1个单位长度的速度向终点B运动,连结PM.设动点P的运动时间是t秒.(1)求线段AE的长;(2)当△ADE与△PBM相似时,求t的值;(3)如图2,连接EP,过点P作PH⊥AE于H.①当EP平分四边形PMEH的面积时,求t的值;②以PE为对称轴作线段BC的轴对称图形B′C′,当线段B′C′与线段AE有公共点时,写出t的取值范围(直接写出答案).