(本题8分)(1) 求出下列各数:① 2的平方根; ②-27的立方根; ③的算术平方根.(2) 将(1)中求出的每个数准确地表示在数轴上.(3) 将(1)中求出的每个数按从小到大的顺序排列,并用“﹤”连接.
高淳区去年螃蟹放养面积为20万亩,每亩产量为40kg,为满足市场需要,今年该区扩大了放养面积,并且全部放养了高产的新品种螃蟹.已知今年螃蟹的总产量为1500万kg,且螃蟹放养面积的增长率是亩产量的增长率的2倍,求该区今年螃蟹的亩产量.
如图,AB为⊙O直径,C、D为⊙O上不同于A、B的两点,∠ABD=2∠BAC.过点C作CE⊥DB,垂足为E,直线AB与CE相交于F点.(1)求证:CF为⊙O的切线;(2)若⊙O的半径为cm,弦BD的长为3cm,求CF的长.
已知二次函数y=ax2+bx+c中自变量x和函数值y的部分对应值如下表:
(1)求该二次函数的函数关系式;(2)在所给的直角坐标系中画出此函数的图象;(3)求出y≤10时自变量x的取值范围(可以结合图象说理).
如图,一堤坝的坡角∠ABC=60°,坡面长度AB=24米(图为横截面).为了使堤坝更加牢固,需要改变堤坝的坡面,为使得坡面的坡角∠ADB=50°,则应将堤坝底端向外拓宽(BD)多少米?(结果精确到0.1米)(参考数据:≈1.73,sin50°≈0.77,cos50°≈0.64,tan50°≈1.20)
如图,在△ABC中,点D、E分别是边BC、AC的中点,过点A作AF∥BC交DE的延长线于F点,连接AD、CF.(1)求证:四边形ADCF是平行四边形;(2)当△ABC满足什么条件时,四边形ADCF是菱形?为什么?