(共8分)阅读下列材料: 1×2= (1×2×3-0×1×2), 2×3= (2×3×4-1×2×3), 3×4= (3×4×5-2×3×4), 由以上三个等式相加,可得1×2+2×3+3×4= ×3×4×5=20. 读完以上材料,请你计算下列各题: (1)1×2+2×3+3×4+…+10×11(写出过程); (2)1×2+2×3+3×4+…+ n×( n+1)=__________; (3)1×2×3+2×3×4+3×4×5+…+7×8×9=__________.
如图,已知△ABC的两边长为m、n,夹角为α,求作△EFG,使得∠E=∠α;有两条边长分别为m、n,且与△ABC不全等.(要求:作出所有满足条件的△EFG,尺规作图,不写画法,保留作图痕迹.在图中标注m、n、、E、F、G)
先化简,再求值:,其中
如图,从顶点A出发,沿着边长为1的正方形的四个顶点依次跳舞,舞步长为1.第一次顺时针移动1步,第二次逆时针移动2步,第三次顺时针移动3步,……以此类推.(1)移动4次后到达何处?(直接给出答案)(2)移动2012次后到达何处?
计算(1) (2)因式分解:
如图,已知抛物线交x轴的正半轴于点A,交y轴于点B.求直线AB的解析式;设P(x,y)(x>0)是直线y = x上的一点,Q是OP 的中点(O是原点),以PQ为对角线作正方形PEQF,若正方形PEQF与直线AB有公共点,求x的取值范围;在(2)的条件下,记正方形PEQF与△OAB公共部分的面积为S,求S关于x的函数解析式,并探究S的最大值.