解方程: (1) (2)
已知:如图△ABC中,∠ACB=90°,点E是边BC上一点,过点E作FE⊥BC(垂足为E)交AB于点F,且EF=AF,以点E为圆心,EC长为半径作⊙E,交BC于点D.(1)求证:直线AB是⊙E的切线;(2)设直线AB和⊙E的公共点为G,AC=8,EF=5,连接EG,求⊙E的半径r.
解方程:
(1)如图1,以的边、为边分别向外作正方形和正方形,连结,试判断与面积之间的关系,并说明理由;(2)园林小路,曲径通幽,如图2所示,小路由白色的正方形大理石和黑色的三角形大理石铺成.已知中间的所有正方形的面积之和是平方米,内圈的所有三角形的面积之和是平方米,这条小路一共占地多少平方米?
如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.(1)求证:△ADE≌△BFE;(2)连接EG,判断EG与DF的位置关系并说明理由.
如图,∠AOB=30°,OC平分∠AOB,CD⊥OA于D,CE∥AO交OB于E,CE=20cm,求CD的长.