四川地震后,某商家为支援灾区人民,计划捐赠帐篷16800顶,该商家备有2辆大货车、8辆小货车运送帐篷.计划大货车比小货车每辆每次多运帐篷200顶,大、小货车每天均运送一次,两天恰好运完.(1)求大、小货车原计划每辆每次各运送帐篷多少顶?(2)因地震导致路基受损,实际运送过程中,每辆大货车每次比原计划少运200m顶,每辆小货车每次比原计划少运300m顶,为了尽快将帐篷运送到灾区,大货车每天比原计划多跑次,小货车每天比原计划多跑m次,一天恰好运送了帐篷14400顶,求m的值.
手工课上,小明准备做一个形状是菱形的风筝,这个菱形的两条对角线长度之和恰好为60cm,菱形的面积S(单位:cm2)随其中一条对角线的长x(单位:cm)的变化而变化.(1)请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围);(2)当x是多少时,菱形风筝面积S最大?最大面积是多少?
如图,四边形ABCD是平行四边形,AC是对角线,BE⊥AC,垂足为E,DF⊥AC ,垂足为F.求证DF=BE
图l、图2是两张形状、大小完全相}同的方格纸,方格纸中的每个小正方形的边长均为1,点A、B在小正方形的顶点上、(1 ) 在图1中画出△ABC(点C在小正方形的顶点上),△ABC的面积为5.且△ABC中有一个角为450(画一个即可)(2)在图2中画出△ABD(点D在小正方形的顶点上),使△ABD的面积为5,且∠ ADB=900(画一个即可).
先化简,再求代数式的值,其中x=2cos450-3
(本小题满分12分)图形既关于点O中心对称,又关于直线AC,BD对称,AC=10,BD=6,已知点E,M是线段AB上的动点(不与端点重合),点O到EF,MN的距离分别为,,△OEF与△OGH组成的图形称为蝶形。(1)求蝶形面积S的最大值;(2)当以EH为直径的圆与以MQ为直径的圆重合时,求与满足的关系式,并求的取值范围。