如图所示,在△AFD和△BEC中,点A、E、F、C在同一条直线上,有下面四个论断:(1)AD=CB,(2)AE=CF,(3)∠B=∠D,(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道证明题,并写出证明过程
如图,一次函数的图象与反比例函数在第一象限的图象交于和两点,与轴交于点.
(1)求反比例函数的解析式;
(2)若点在轴上,且的面积为5,求点的坐标.
先化简,再选一个合适的数代入求值:.
解方程:.
计算:.
如图,顶点为的抛物线与轴交于,两点,与轴交于点.
(1)求这条抛物线对应的函数表达式;
(2)问在轴上是否存在一点,使得为直角三角形?若存在,求出点的坐标;若不存在,说明理由.
(3)若在第一象限的抛物线下方有一动点,满足,过作轴于点,设的内心为,试求的最小值.