已知双曲线的中心在原点,对称轴为坐标轴,一条渐近线为,右焦点,左右顶点分别为,,为双曲线上一点(不同于,),直线,分别与直线交于,两点;(1)求双曲线的方程;(2)求证:为定值,并求此定值.
已知抛物线C的顶点为坐标原点,焦点为, (1)求抛物线的方程; (2)过点作直线交抛物线于两点,若直线分别与直线交于两点,求的取值范围.
已知椭圆的离心率为,椭圆C的长轴长为4. (1)求椭圆C的方程; (2)已知直线与椭圆C交于A,B两点,是否存在实数k使得以线段AB 为直径的圆恰好经过坐标原点O?若存在,求出k的值;若不存在,请说明理由.
如图,在长方体中,,点E在棱上移动. (1)证明:; (2)等于何值时,二面角为.
经过椭圆的左焦点作直线,与椭圆交于两点,且,求直线的方程.
如图(1),在中,点分别是的中点,将沿折起到的位置,使如图(2)所示,M为的中点,求与面所成角的正弦值.