(本小题满分16分)已知椭圆.(1)求椭圆的离心率;(2)设为原点,若点在直线上,点在椭圆上,且,求线段长度的最小值.
(本小题满分12分)在如图的多面体中,⊥平面,,,,,,,是的中点.(Ⅰ) 求证:平面;(Ⅱ) 求二面角的余弦值.
如图,设、分别是圆和椭圆的弦,且弦的端点在轴的异侧,端点与、与的横坐标分别相等,纵坐标分别同号.(Ⅰ)若弦所在直线斜率为,且弦的中点的横坐标为,求直线的方程;(Ⅱ)若弦过定点,试探究弦是否也必过某个定点. 若有,请证明;若没有,请说明理由.
如图,有一边长为2米的正方形钢板缺损一角(图中的阴影部分),边缘线是以直线为对称轴,以线段的中点为顶点的抛物线的一部分.工人师傅要将缺损一角切割下来,使剩余的部分成为一个直角梯形.(Ⅰ)请建立适当的直角坐标系,求阴影部分的边缘线的方程;(Ⅱ)如何画出切割路径,使得剩余部分即直角梯形的面积最大?并求其最大值.
(本小题满分12分)已知直线经过抛物线的焦点,且与抛物线交于两点,点为坐标原点.(Ⅰ)证明:为钝角.(Ⅱ)若的面积为,求直线的方程;
已知椭圆C:的上顶点坐标为,离心率为.(Ⅰ)求椭圆方程;(Ⅱ)设P为椭圆上一点,A为左顶点,F为椭圆的右焦点,求的取值范围.